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Lyapunov exponents and the merger of point-vortex clusters
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Vortex clusters in two-dimensional inviscid flow are studied by long-time integration of the point-
vortex equations. We compute Lyapunov exponents and the Kolmogorov-Sinai entropy (KSE) as func-
tions of the dimensionless centroid separation u between two clusters, each of them containing two or
four point vortices of equal strengths. It is demonstrated that the KSE of two four-vortex clusters in-
creases rapidly if u becomes smaller than u,~3.2, and the merger time increases faster than exponen-
tially for > p.. This result supports the conjecture that the merger of distant continuous vorticity fields
is so exceedingly slow as to be numerically unidentifiable.

PACS number(s): 47.15.Ki, 47.52.+j, 47.32.Cc

The motion of two vorticity patches separated by irro-
tational flow is a fundamental problem of perfect fluid dy-
namics in two dimensions. Although this problem has
been intensively studied in the past using moment models
(Melander and co-workers [1,2]), contour dynamics
(Dritschel [3]), direct numerical simulation (Melander,
Zabusky, and McWilliams [2]) and statistical equilibrium
theories (Whitaker and Turkington [4], Robert and Som-
meria [5], and Lundgren and Pointin [6]) there is still a
partial contradiction between the deterministic ap-
proaches [1-3] and the statistical ones [4—6]. On the
other hand, the deterministic theories predict that the
vortex patches rotate around each other with constant
angular velocity if the dimensionless separation

pu=L /Il ~(vortex distance)/(vortex diameter) (1)

is larger than some critical value ;1. depending on the ini-
tial shape of the patches. In the case u <y, these theories
predict the merger of the vortex patches into a nearly ax-
isymmetric state or the nonexistence of periodic solu-
tions. On the other hand, the statistical theory predicts
merger for any value of u and a fully axisymmetric final
equilibrium state. To reconcile the deterministic and the
statistical approaches Whitaker and Turkington [4] con-
jecture that the merger ultimately occurs for arbitrary u,
while the speed of the merger process becomes exceeding-
ly slow for large u. This fact could have precluded the
detection of the merger in the previous direct simulations
restricted to few eddy-turnover times.

The aim of the present paper is to invoke the theory of
nonlinear dynamical systems, specifically Lyapunov ex-
ponents and the Kolmogorov-Sinai entropy, which mea-
sure the average time over which the state of a system
can be predicted [7], in order to characterize in more de-
tail the speed of the mixing process in phase space as a
function of u. Ideally, one would wish to compute
Lyapunov exponents from numerical solutions of the
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Euler equations or Navier-Stokes equations at high Rey-
nolds number, as it was done in the work of Grappin and
Léorat [8]. For the problem at hand, however, this task
is quite expensive computationally. Therefore we restrict
ourselves to the consideration of point vortices, arranged
in two distant clusters with either two or four vortices,
such as sketched in Fig. 1. Although this model is only a
caricature of the continuous merger problem, it offers
some significant advantages. On the one hand, numerical
solutions of the point-vortex equations can be obtained
with high accuracy and high speed. On the other hand,
the number of dynamical degrees of freedom is fixed by
the number of point vortices and the computation of
Lyapunov exponents is straightforward.

We consider the Hamiltonian equations of point-vortex
dynamics (see e.g., Aref [9])

dx, Q3H 4y, OH
= ’ = :1)---’ H
ar oy, ar ax, (a N) (2)
where
r\2 N
H=—2— zlnl?a—?ﬂl . 3)
a<pf

These equations describe the time dependence of the posi-
tions 7,=(x,,y,) of point vortices with equal constant
circulation T.

We solve numerically the Hamiltonian Egs. (2) and (3)
by a fourth order Runge-Kutta method with adaptive
step size control [10]. This step size control is comple-
mented by a routine [11] which guarantees that the rela-
tive run time error of all integrals of motion is below
1077 for a run lasting typically several hundred units of
the eddy-turnaround time. The computations are per-
formed with dimensionless quantities 7,, ¢, and I'=2,
which can be formally introduced by measuring space
and time in units of / and /2/27T (cf. Fig. 1). For each
run we evaluate the distance u(z) between the centroids
of each vortex cluster and its maximum relative variation

_ ~max[u(¢)]—min[u(z)]
=2
VD = ax ()] F min[ (1))

t€[0,T], 0SV<1 @)

over the total integration time. Moreover, we compute
the time-dependent quantities
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FIG. 1. Sketch of initial conditions in the four-vortex case (a) and in
the eight-vortex case (b). The distances between the vortices 1-2 and 3-4
are equal in (a).

A (8)={In[e;(¢)/e;(0)]} /t (i=1,...,2N), (5)

where €; are the distances between the unperturbed tra-
jectory and nearby trajectories evolving from a set of or-
thogonal initial perturbations as detailed in the work of
Benettin et al. [12]. For the calculation of the Lyapunov
exponents, which we approximate by the values A,(T) at
large but finite time, we use the algorithm of Wolf et al.
[13]. Finally, we compute the most important quantity
by which chaotic motion can be characterized, namely,
the Kolmogorov-Sinai entropy

h=3 A(T) 6)
A;>0

as the sum of all non-negative Lyapunov exponents. It is
inversely proportional to the time interval over which the
state of a dynamical system can be predicted and mea-
sures the rate at which information about the state is be-
ing lost with time [7].

Let us briefly recall some basic properties of the point-
vortex Egs. (2) and (3). This system has three indepen-
dent integrals of motion, resulting from the invariance
properties of the two-dimensional Euler equations (Aref
[9]). Therefore, a system of four point vortices is the sim-
plest nonintegrable system, capable of displaying chaotic
motion. The behavior of two point vortices with equal
strengths I' can be deduced from an analytic solution of
(2). It consists of a perpetual rotation around their cen-
troid with constant angular velocity I /2712

Consider first the motion of four point vortices as the
simplest case displaying an analog of the merger
phenomenon. We study the evolution starting from the
initial condition sketched in Fig. 1(a). This initial condi-
tion is completely determined by the value u=L /I of the
centroid distance and by the angle @ characterizing the
deviation of the initial configuration from rectangular
shape. Note that for ¢=/2 the motion is unchanged
(apart from a rescaling of coordinates and time) if y is re-
placed by 1/u, which serves as an additional test for the
precision of the numerical computation. In the following
we confine ourselves to the case u > 1. In the limit g— o
integrability and the existence of quasiperiodic solutions
were demonstrated by Khanin [14]. Each pair rotates
with angular velocity I'/27I? around its own centroid,
while both pairs rotate around each other with angular
velocity T"/wL? Figure 2, where we plot the temporal
evolution of the centroid distance for different initial
values of u, shows that for large u the distance remains
virtually constant. The weak oscillatory modulations of
the upper curves indicates weak nonlinear interactions
between both pairs. As the initial separation gets small-

er, the centroid distance experiences vigorous fluctua-
tions indicating an irregular vortex motion. Quantitative
information about the transition from quasiperiodic to ir-
regular motion is provided by the frequency spectra of
u(t) which are dominated by the basic frequencies and
their harmonics as long as u>pu. (@), and which behave
(quasi) continuously for u <u (@) [15]. This transition to
chaotic motion coincides with a rapid increase of the
fluctuation amplitude V as shown in Fig. 3(a). The high

value of V indicates that the centroid distance—and
thereby the position of each vortex cluster—is no longer

a meaningful quantity. Visually, the particle trajectories
look highly entangled in the chaotic regime and no dis-
tinction is possible between individual clusters. We can
thus define the merger condition for point-vortex clusters
by the value of u below which ¥ (u) jumps from zero to a
value close to one. For the numerical computations we
use V(u)=4 as a merger condition. Figure 3(a) shows
that the merger transition depends only weakly on the
angle @ in the initial condition and can be expressed as
t.=2.81+0.2. This result can be interpreted as a signa-
ture of the existence of an almost circular region with ra-
dius R ~ 1.4/ circumscribing the point-vortex cluster in
which other point vortices are trapped once they have
crossed its boundary. The existence of such a region
around isolated point-vortex clusters has been already
noted in [3]. It is, however, noteworthy that this region
has physical relevance for interacting point-vortex clus-
ters too. A similar phenomenon has been observed in a
recent study of chaotic advection in the vicinity of indivi-
dual point vortices [16].

The location of the merger transition point in the
neighborhood of p,=2.8 is not entirely fortuitous and
can be partially understood from previous results of Aref
and Pomphrey [17] for an integrable subproblem charac-
terized by the initial condition ¢=1/2. It was shown by

those authors that the symmetry relation 7,=—7;;
¥, = —7, is an invariant of motion if it is fulfilled by the

initial condition and that this particular type of evolution
is completely determined by the initial value of the in-
tegral of motion

4 -6

> (F,—7p )2 (7

a<p

4
A2=21[] (F,—Fp)?
a<pf
There exists a critical value A,=2/3V'3 such that if
A <A, the motion of the four point vortices consists of a
separate rotation of the two pairs around their common
center of vorticity superposed by a separate rotation of
each pair around its centroid. If A> A, the four point
vortices rotate around their common center of vorticity.
The condition A=A, describes the separatrix between
these classes of periodic motion in terms of / and L and
provides, after some algebraic manipulations, the explicit
relation p.=2.876 for the transition from separate rota-
tion of each pair to the common rotation.

Next we turn to an analysis of the Lyapunov exponents
as functions of 4 and @. In order to understand the sta-
bility properties of motion resulting from initial condi-
tions of Fig. 1(a) we change systematically the values of
and @ in the initial conditions. For each parameter pair
(u,@) we calculate the complete set of eight Lyapunov
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FIG. 2. Temporal evolution of the centroid distance in the four-
vortex system for different initial separations of the vortex clusters and
@=0. Parameters are [ =0.2, I =27.

exponents. Because of the existence of three integrals of
motion there can be at most one positive Lyapunov ex-
ponent, say A;, which determines the Kolmogorov-Sinai
entropy as h =A,.

For large p we find that all A,(T') tend to zero as the to-
tal integration time T is increased [cf. Fig. 3(b)]. Thus,
the corresponding solution for g >, is stable in phase
space. If u decreases below a critical value u., which is
very close to the location of the merger condition, one
Lyapunov exponent increases sharply and we observe an
unstable (chaotic) trajectory. The main conclusion which
can be drawn from the Kolmogorov-Sinai entropy of the
four-vortex system is that the merger of clusters with two
point vortices is accompanied by a transition from regu-
lar (quasiperiodic) to chaotic motion.

Consider now the motion of eight point vortices evolv-
ing from the initial condition sketched in Fig. 1(b). No-
tice that this is the simplest generic case in which each
cluster (since comprising four vortices) is chaotic by it-
self. We restrict ourselves to the case I, =2I, in which
we know from the previous section that each cluster
behaves chaotically by itself. We evaluate the time T(u)
after which the two clusters merge and the value of the
Kolmogorov-Sinai entropy 4 (u) for the resulting motion
where u=L /V/ (13 +13)2.

The merger time is defined as the integration time after
which V, as defined in Eq. (4), exceeds the value of 1 for
the first time. Visual observation of the point-vortex
motion affirm the appropriateness of this definition. The
behavior of the merging time, plotted in Fig. 4(a), can be
roughly divided in two classes. For pu<3.2, T(u) is of
the order of unity and shows a slow exponential increase.
In the vicinity of £ =3.2 the merging time jumps by ap-
proximately one order of magnitude and increases faster
than exponentially for > 3.2. No merger was observed
for u>3.6 within a total integration time of 10°. The
behavior of the Kolmogorov-Sinai entropy, graphed in
Fig. 4(b), appears to be strongly correlated with that of
T(u). Above p=3.2, where the merging process
proceeds either very slowly or does not take place at all,
the Kolmogorov-Sinai entropy is almost independent of
and, after appropriate rescaling of the time, assumes
roughly twice the value of an individually moving cluster.
At the critical value u=3.2 the Kolmogorov-Sinai entro-
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py has a bend and increases with decreasing centroid sep-
aration. To test the robustness of this result, we have
performed spot checks with simulations for different ra-
tios I, /1,, always obtaining a bend in the KSE in the vi-
cinity of u=3.2

The appropriateness of the Kolmogorov-Sinai entropy
(KSE) for the characterization of the merger process rests
on two facts. First, the KSE is an additive quantity be-
cause the total KSE of two noninteracting systems, say A,
is the sum A =h;+h, of the KSE’s of each subsystem.
As in classical statistical mechanics, the excess
A=h—h,—h, of the total KSE over the KSE of the
noninteracting subsystems can then be considered as a
“mixing entropy” characterizing the degree of additional
information production due to the interaction of the sub-
systems. Second, a peculiarity of the point-vortex model
consists in the fact that the canonical coordinates of the
Hamiltonian system are identical with the coordinates of
the point vortices in physical space. Therefore, the
Lyapunov exponents and the Kolmogorov-Sinai entropy
are directly related to mixing properties of the fluid flow.
Indeed, €;(¢) appearing in Eq. (5) is the sum of all dis-
tances between an unperturbed point-vortex ensemble
and a perturbed ensemble, and consequently, the
Kolmogorov-Sinai entropy describes the information pro-
duction within one unit of time caused by all unstable
infinitesimal displacements of point vortices.

Al
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FIG. 3. Regular and chaotic motion in the four-vortex system: (a)
Maximum fluctuation of the centroid distance, (b) Kolmogorov-Sinai
entropy (equal to the single nonzero Lyapunov exponent) as functions of
the parameters p and @. Parameters as in Fig. 2. Total integration time
is T=1000. Critical values for u are 2.75, 2.7, and 2.90 for @ equal to O,
m/4, and /2, respectively.
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FIG. 4. Merger in the eight-vortex system: Merger time (a) and
Kolmogorov-Sinai entropy (b) as a function of the initial centroid dis-
tance u=L /(12 +1%)!/2 for the initial condition of Fig. 1(b). Parame-
ters are /,=0.4, I,=0.2, I'=27. The inset in (a) is a linear plot of

T(w).

With these considerations in mind, we can give the fol-
lowing physical interpretation for the bend of the
Kolmogorov-Sinai entropy as a function of u and its
correlation with the merger time. For distant clusters the
mixing entropy A=h-2h,, where h, is the KSE of a
four-vortex cluster, is very small indicating that mixing
between the clusters is virtually absent, in agreement with
the behavior of the merger time. As u decreases below
u=3.2, the mixing entropy starts to increase, implying
that the mixing in phase space (which in our case is iden-
tical with physical space) is more efficient than the mix-

ing which would have been provided by the sum of the
noninteracting subsystems.

In summary, we have presented numerical evidence for
the existence of a merger phenomenon of distant point-
vortex clusters. In the eight-vortex system, which
represents the simplest generic case, merger occurs
within few eddy-turnaround times if the separation ratio
u is smaller than 3.2. For p>3.2 the merger time T(u)
grows faster than exponentially suggesting a singularity
of T(u) for u>3.6. The transition at ©=3.2 is accom-
panied by a bend in the Kolmogorov-Sinai entropy. Our
results are in qualitative agreement with the analysis of
Lundgren and Pointin [6] in that the merger time is a
monotonically increasing function of u. Note, however,
that the previous theory, in our notation, predicts the
merger velocity dln(u)/dt to be proportional to u~* [cf.
Eq. (71) in [6]), while our numerical results suggest the
existence of a critical 4 above which this velocity de-
creases faster than exponentially.

One should be wary of drawing conclusions about the
behavior of the infinite-dimensional Euler equation from
the results of low-dimensional point-vortex models. Nev-
ertheless, some of the present results may serve as a
guideline for future studies of the continuous merger
problem. In particular, it would be interesting to investi-
gate the Kolmogorov-Sinai entropy in the continuous
problem by direct simulations, similar to those of Grap-
pin and Léorat [8], in order to verify the discontinuity of
the KSE and to explore possible relations to the concept
of dynamical phase transitions. A systematic study of the
merging time for a few selected values of u using direct
simulation, contour dynamics or large numbers of point
vortices could provide insight into the question about the
existence of a singularity of T'(u) for finite separation ra-
tios. This would imply the existence of initial conditions
which do not evolve to an axisymmetric state, even if the
latter is a statistical equilibrium of the two-dimensional
Euler equations.
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